2025-01-13 15:40:06 文章来源:未知
2025事业单位职业能力倾向测验:和定最值和方程更搭
闂傚倸鍊峰ù鍥綖婢舵劦鏁婇柡宥庡幖绾惧鏌涢埄鍐姇闁稿顦扮换婵囩節閸屾艾鍗抽柟鑹版彧缁插墽鈧碍宀搁弻鐔虹磼濡桨鍒婂┑鐐层偢娴滃爼寮婚敐鍡樺劅闁挎稑瀚弳娑㈡⒑閹肩偛濡奸柟纰卞亰閺佸啴濮€閵堝懐鍊炲銈嗗笂缁€浣糕枔鐏炲墽绠鹃弶鍫濆⒔閸掍即鏌熼懞銉х煉闁诡喚鍏橀弫鎾绘晸閿燂拷 闂傚倸鍊风粈渚€骞夐敓鐘插惞閹兼番鍔岀粈澶愮叓閸ャ劋绶遍柡浣割儔閺屻劑鎮ら崒娑橆伓闂傚倷娴囬褏鎹㈤幒妤€纾绘繛鎴炲殠娴滅懓顭跨捄铏圭伇缂佺姵妫冮弻銊╂偆閸屾稑顏�闂傚倸鍊风粈渚€宕ョ€n亶鐔嗘慨妞诲亾鐎规洦鍨堕獮搴ㄦ嚍閵夈儱澧炬俊鐐€栭悧妤冪矙閹捐鐓樼€广儱顦伴悡鍐煃鏉炴壆顦﹂柡鍡樻礈缁辨帡骞夌€n偄顏�
2025事业单位职业能力倾向测验:和定最值和方程更搭
事业单位职业能力倾向测验试卷中的数量关系,因其难度较高往往被很多考生忽略,甚至刻意放弃。在别人放弃数量关系的情况下,如果我们能够做得更好,对于整体成绩的提升也是有很大帮助的。接下来华图事业单位就来介绍数量关系中一种较为常见且难度相对较低、比较容易拿分的题型——和定最值问题。
一、什么是和定最值问题
例:将10人分成人数不等的两个小组,且每人只能参加一个小组,那么参加人数最多的小组最多有多少人?
这个例子就是一个典型的和定最值问题:“和定”即几个数之和为定值,本题两个小组的人数之和为10,和为定值;“最值”即求其中某个量的最大值或最小值,本题所求为最多的小组最多多少人,所求为最值。故本题属于和定最值问题。
二、解题原则
因为和为定值,故求其中某个量的最大值,只需让其他量尽可能小;求其中某个量的最小值,只需让其他量尽可能大。
上述例题中求参加人数最多的小组最多有多少人,令另一组人数应尽可能少,最少为1,因此所求为10-1=9人。
三、常用方法
实际考试中,题目往往比上述例题复杂,就需要我们借助设变量的思维分析求解。
例1
6人进行书籍大比拼,已知6人的书籍数量是互不相同的整数。若6人的书籍总数量是513本,求书籍数量最少的同学最多有多少本?
A.83 B.84 C.85 D.86
【华图事业单位解析】A。6人书籍之和为513本,为定值;所求为书籍数量最少的同学的最大值,满足和定最值条件。本题无法直接求解,我们可以设所求书籍数量最少的同学的最大值为x本。要让x尽可能大,应让其他人尽可能小,又要求互不相同,则其他人最少分别为x+1、x+2、x+3、x+4、x+5本,可得x+x+1+x+2+x+3+x+4+x+5=513,解得x=83。故本题选A。
本题就是利用方程法来解决和定最值,计算结果是正整数,即为所求答案。若计算结果并不是正整数,这又该如何处理呢?
例2
5名女生的平均体重是58公斤,且每个人的体重是互不相同的整数,其中体重最轻的重55公斤。问体重最重的最少( )公斤?
A.60 B.61 C.62 D.63
【华图事业单位解析】B。5名女生的平均体重是58公斤,即体重之和是58×5=290公斤,为定值;所求为体重最重的人的最小值,满足和定最值条件。设体重最重的人为x公斤,要让x尽可能小,应让其他人的体重尽可能大。体重最轻的人为55公斤,体重互不相同,则体重排名第二至第四最大分别为x-1、x-2、x-3,可得x+x-1+x-2+x-3+55=290,解得x=60.25。60.25为我们求得的最小值,也就说所取的值要大于等于60.25,又是最小的整数,那只能是61,答案选B。
企业微信客服
山东华图微信公众号
上一篇:2025事业单位职业能力倾向测验:包含与组成 轻松分得清
下一篇:没有了